Reinforcement learning for context awareness and intelligence in wireless networks: Review, new features and open issues
نویسندگان
چکیده
In wireless networks, context awareness and intelligence are capabilities that enable each host to observe, learn, and respond to its complex and dynamic operating environment in an efficient manner. These capabilities contrast with traditional approaches where each host adheres to a predefined set of rules, and responds accordingly. In recent years, context awareness and intelligence have gained tremendous popularity due to the substantial network-wide performance enhancement they have to offer. In this article, we advocate the use of reinforcement learning (RL) to achieve context awareness and intelligence. The RL approach has been applied in a variety of schemes such as routing, resource management and dynamic channel selection in wireless networks. Examples of wireless networks are mobile ad hoc networks, wireless sensor networks, cellular networks and cognitive radio networks. This article presents an overview of classical RL and three extensions, including events, rules and agent interaction and coordination, to wireless networks. We discuss how several wireless network schemes have been approached using RL to provide network performance enhancement, and also open issues associated with this approach. Throughout the paper, discussions are presented in a tutorial manner, and are related to existing work in order to establish a foundation for further research in this field, specifically, for the improvement of the RL approach in the context of wireless networking, for the improvement of the RL approach through the use of the extensions in existing schemes, as well as for the design and implementation of RL in new schemes. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملAchieving Context Awareness and Intelligence in Cognitive Radio Networks using Reinforcement Learning for Stateful Applications
The tremendous growth in ubiquitous low-cost wireless applications that utilize the unlicensed spectrum bands has laid increasing stress on the limited and scarce radio spectrum resources. Given that the licensed or Primary Users (PUs) are oblivious to the presence of unlicensed or Secondary Users (SUs), Cognitive Radio (CR) is a new paradigm in wireless communication that allows the SUs to det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Network and Computer Applications
دوره 35 شماره
صفحات -
تاریخ انتشار 2012